Blind demixing and deconvolution with noisy data at near optimal rate

Dominik Stöger, Peter Jung, Felix Krahmer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Blind demixing and deconvolution refers to the problem of simultaneous deconvolution of several source signals from its noisy superposition. This problem appears, amongst others, in the field of Wireless Communication: Many sensors sporadically communicate only short messages over unknown channels. We show that robust recovery of message and channel vectors can be achieved via convex recovery. This requires that random linear encoding is applied at the devices and that the number of required measurements at the receiver scales essentially with the degrees of freedom of the overall estimation problem. Thus, the scaling is linear in the number of source signals. This significantly improves previous results.

OriginalspracheEnglisch
TitelWavelets and Sparsity XVII
Redakteure/-innenYue M. Lu, Dimitri Van De Ville, Dimitri Van De Ville, Manos Papadakis
Herausgeber (Verlag)SPIE
ISBN (elektronisch)9781510612457
DOIs
PublikationsstatusVeröffentlicht - 2017
VeranstaltungWavelets and Sparsity XVII 2017 - San Diego, USA/Vereinigte Staaten
Dauer: 6 Aug. 20179 Aug. 2017

Publikationsreihe

NameProceedings of SPIE - The International Society for Optical Engineering
Band10394
ISSN (Print)0277-786X
ISSN (elektronisch)1996-756X

Konferenz

KonferenzWavelets and Sparsity XVII 2017
Land/GebietUSA/Vereinigte Staaten
OrtSan Diego
Zeitraum6/08/179/08/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Blind demixing and deconvolution with noisy data at near optimal rate“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren