BioTOOL—a Readily and Flexible Biogas Rate Prediction Tool for End-users

Sebastian Hien, Joachim Hansen, Jörg E. Drewes, Konrad Koch

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

5 Zitate (Scopus)

Abstract

This study illustrates an approach to provide an easily manageable tool for end-users to predict the biogas production rate to ease the transition to a flexible and proactive operation of digesters at both biogas plants as well as at wastewater treatment plants. To provide a high flexibility to end-users but keep BioTOOL easily manageable, the approach uses a pre-trained artificial neural networks library consisting of different variable combinations. In BioTOOL’s workflow, end-user will be asked for current measurements disregarding the combination of those. BioTOOL uses a seek-and-implement method to find the correct stored network for the entered input. This approach results in predictions similar to the optimized pre-trained network. It has been demonstrated that the idea of a flexible prediction tool could be fully realized.

OriginalspracheEnglisch
Seiten (von - bis)87-94
Seitenumfang8
FachzeitschriftEnvironmental Modeling and Assessment
Jahrgang24
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 Feb. 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „BioTOOL—a Readily and Flexible Biogas Rate Prediction Tool for End-users“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren