Biologically Inspired Neural Path Finding

Hang Li, Qadeer Khan, Volker Tresp, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The human brain can be considered to be a graphical structure comprising of tens of billions of biological neurons connected by synapses. It has the remarkable ability to automatically re-route information flow through alternate paths, in case some neurons are damaged. Moreover, the brain is capable of retaining information and applying it to similar but completely unseen scenarios. In this paper, we take inspiration from these attributes of the brain to develop a computational framework to find the optimal low cost path between a source node and a destination node in a generalized graph. We show that our framework is capable of handling unseen graphs at test time. Moreover, it can find alternate optimal paths, when nodes are arbitrarily added or removed during inference, while maintaining a fixed prediction time. Code accompanying this work can be found here: https://github.com/hangligit/pathfinding.

OriginalspracheEnglisch
TitelBrain Informatics - 15th International Conference, BI 2022, Proceedings
Redakteure/-innenMufti Mahmud, Jing He, Stefano Vassanelli, André van Zundert, Ning Zhong
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten329-342
Seitenumfang14
ISBN (Print)9783031150364
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung15th International Conference on Brain Informatics, BI 2022 - Virtual, Online
Dauer: 15 Juli 202217 Juli 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13406 LNAI
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz15th International Conference on Brain Informatics, BI 2022
OrtVirtual, Online
Zeitraum15/07/2217/07/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Biologically Inspired Neural Path Finding“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren