TY - JOUR
T1 - Biological imaging in radiation oncology
AU - Grosu, Anca Ligia
AU - Wiedenmann, Nicole
AU - Molls, Michael
PY - 2005
Y1 - 2005
N2 - The goal of this study was to discuss the value of integrating biological imaging (PET, SPECT, MRS etc.) in radiation treatment planning and monitoring. Studies in patients with brain tumors have shown that, compared to CT and MRI alone, the image fusion of CT/MRI and amino acid SPECT or PET allows a more correct delineation of gross tumor volume (GTV) and planning target volume (PTV). For FDG-PET, comparable results with different techniques are reported in the literature also for bronchial carcinoma, ear-nose-and-throat tumors, and cervical carcinoma, or, in the case of MRS, for prostate cancer. Imaging of hypoxia, cell proliferation, apoptosis, tumor angiogenesis, and gene expression leads to the identification of differently aggressive areas of a biologically inhomogeneous tumor mass that can be individually and more appropriately targeted using innovative IMRT. Thus, a biological, inhomogeneous dose distribution can be generated, the so-called dose painting. In addition, the biological imaging can play a significant role in the evaluation of the therapy response after radiochemotherapy. Clinical studies in ear-nose-and-throat tumors, bronchial carcinoma, esophagus carcinoma, and cervical carcinoma suggest that the sensitivity and specificity of FDG-PET for the therapy response are higher compared to anatomical imaging (CT and MRI). Clinical and experimental studies are required to define the real impact of these investigations in radiation treatment planning, and especially in the evaluation of therapy response.
AB - The goal of this study was to discuss the value of integrating biological imaging (PET, SPECT, MRS etc.) in radiation treatment planning and monitoring. Studies in patients with brain tumors have shown that, compared to CT and MRI alone, the image fusion of CT/MRI and amino acid SPECT or PET allows a more correct delineation of gross tumor volume (GTV) and planning target volume (PTV). For FDG-PET, comparable results with different techniques are reported in the literature also for bronchial carcinoma, ear-nose-and-throat tumors, and cervical carcinoma, or, in the case of MRS, for prostate cancer. Imaging of hypoxia, cell proliferation, apoptosis, tumor angiogenesis, and gene expression leads to the identification of differently aggressive areas of a biologically inhomogeneous tumor mass that can be individually and more appropriately targeted using innovative IMRT. Thus, a biological, inhomogeneous dose distribution can be generated, the so-called dose painting. In addition, the biological imaging can play a significant role in the evaluation of the therapy response after radiochemotherapy. Clinical studies in ear-nose-and-throat tumors, bronchial carcinoma, esophagus carcinoma, and cervical carcinoma suggest that the sensitivity and specificity of FDG-PET for the therapy response are higher compared to anatomical imaging (CT and MRI). Clinical and experimental studies are required to define the real impact of these investigations in radiation treatment planning, and especially in the evaluation of therapy response.
KW - Biological imaging
KW - Biological target volume
KW - Dose painting
KW - Radiation treatment planning and monitoring
UR - http://www.scopus.com/inward/record.url?scp=24644449095&partnerID=8YFLogxK
U2 - 10.1078/0939-3889-00264
DO - 10.1078/0939-3889-00264
M3 - Article
C2 - 16171034
AN - SCOPUS:24644449095
SN - 0939-3889
VL - 15
SP - 141
EP - 145
JO - Zeitschrift fur Medizinische Physik
JF - Zeitschrift fur Medizinische Physik
IS - 3
ER -