Binary scalar products

Andrey Kupavskii, Stefan Weltge

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1 Zitat (Scopus)

Abstract

Let A,B⊆Rd both span Rd such that 〈a,b〉∈{0,1} holds for all a∈A, b∈B. We show that |A|⋅|B|≤(d+1)2d. This allows us to settle a conjecture by Bohn, Faenza, Fiorini, Fisikopoulos, Macchia, and Pashkovich (2015) concerning 2-level polytopes. Such polytopes have the property that for every facet-defining hyperplane H there is a parallel hyperplane H such that H∪H contain all vertices. The authors conjectured that for every d-dimensional 2-level polytope P the product of the number of vertices of P and the number of facets of P is at most d2d+1, which we show to be true.

OriginalspracheEnglisch
Seiten (von - bis)18-30
Seitenumfang13
FachzeitschriftJournal of Combinatorial Theory, Series B
Jahrgang156
DOIs
PublikationsstatusVeröffentlicht - Sept. 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Binary scalar products“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren