Bin picking of deformable linear objects using object-oriented grasp planning

Jonas Dirr, Cong Xu, Janik Zeller, Daniel Gebauer, Rüdiger Daub

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

Abstract

Picking deformable linear objects (DLOs) from an unorganized supply is required for many industrial handling and assembly tasks. Automated picking with robots can address labour shortage, but remains an unresolved challenge for DLOs. This paper proposes an approach for bin picking of DLOs using object-oriented grasp planning. Therefore, DLOs are localized in 2D images through general purpose instance segmentation, and the DLO topology is determined. Subsequently, grasp pose candidates are sampled and evaluated, and suitable instances for picking are determined. Thus, this approach derives a collision-free grasp pose for picking a suitable object. Real-world experiments demonstrate a success rate of up to 97 % for picking DLOs from overlapping and disordered arrangements in the first attempt.

OriginalspracheEnglisch
Seiten (von - bis)810-815
Seitenumfang6
FachzeitschriftIFAC Proceedings Volumes (IFAC-PapersOnline)
Jahrgang58
Ausgabenummer27
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung18th IFAC Workshop on Time Delay Systems, TDS 2024 - Udine, Italien
Dauer: 2 Okt. 20235 Okt. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Bin picking of deformable linear objects using object-oriented grasp planning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren