"BIM-TO-SCAN" FOR SCAN-TO-BIM: GENERATING REALISTIC SYNTHETIC GROUND TRUTH POINT CLOUDS BASED ON INDUSTRIAL 3D MODELS

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

15 Zitate (Scopus)

Abstract

In the field of Scan-to-BIM, recent developments achieve promising results in accuracy and flexibility, leveraging tools from the field of deep learning for semantic segmentation of raw point cloud data. Those methods demand large-scale, domain-specific datasets for training. Promising ideas to fulfill this need use primitive synthetic point cloud data, which predominantly lack distinct point cloud properties, such as missing patches due to occlusions in the scene. To solve this issue, we use a specialized laser scan simulation tool from the domain of Geosciences in a toolchain that allows generating realistic ground truth data based on 3D models. In this context, we introduce a comprehensive taxonomy for the industrial point cloud context. Furthermore, we provide the missing link for a comprehensive, open-source toolchain that is flexible towards any use case in the field.

OriginalspracheEnglisch
TitelProceedings of the 2021 European Conference on Computing in Construction
Redakteure/-innenDaniel M. Hall, Athanasios Chassiakos, James O'Donnell, Dragana Nikolic, Yiannis Xenides
Herausgeber (Verlag)European Council on Computing in Construction (EC3)
Seiten164-172
Seitenumfang9
ISBN (Print)9783907234549
DOIs
PublikationsstatusVeröffentlicht - 2021
VeranstaltungEuropean Conference on Computing in Construction, EC3 2021 - Virtual, Online
Dauer: 26 Juli 202128 Juli 2021

Publikationsreihe

NameProceedings of the European Conference on Computing in Construction
ISSN (elektronisch)2684-1150

Konferenz

KonferenzEuropean Conference on Computing in Construction, EC3 2021
OrtVirtual, Online
Zeitraum26/07/2128/07/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „"BIM-TO-SCAN" FOR SCAN-TO-BIM: GENERATING REALISTIC SYNTHETIC GROUND TRUTH POINT CLOUDS BASED ON INDUSTRIAL 3D MODELS“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren