Benchmarking learned indexes

Ryan Marcus, Mihail Stoian, Andreas Kipf, Sanchit Misra, Alexander van Renen, Alfons Kemper, Thomas Neumann, Tim Kraska

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

68 Zitate (Scopus)

Abstract

Recent advancements in learned index structures propose replacing existing index structures, like B-Trees, with approximate learned models. In this work, we present a unified benchmark that compares well-tuned implementations of three learned index structures against several state-of-the-art "traditional" baselines. Using four real-world datasets, we demonstrate that learned index structures can indeed outperform non-learned indexes in read-only in-memory workloads over a dense array. We investigate the impact of caching, pipelining, dataset size, and key size. We study the performance profile of learned index structures, and build an explanation for why learned models achieve such good performance. Finally, we investigate other important properties of learned index structures, such as their performance in multi-threaded systems and their build times.

OriginalspracheEnglisch
Seiten (von - bis)1-13
Seitenumfang13
FachzeitschriftProceedings of the VLDB Endowment
Jahrgang14
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Sept. 2020
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Benchmarking learned indexes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren