Bayesian Active Learning for Sim-to-Real Robotic Perception

Jianxiang Feng, Jongseok Lee, Maximilian Durner, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

While learning from synthetic training data has recently gained an increased attention, in real-world robotic applications, there are still performance deficiencies due to the so-called Sim-to-Real gap. In practice, this gap is hard to resolve with only synthetic data. Therefore, we focus on an efficient acquisition of real data within a Sim-to-Real learning pipeline. Concretely, we employ deep Bayesian active learning to minimize manual annotation efforts and devise an autonomous learning paradigm to select the data that is considered useful for the human expert to annotate. To achieve this, a Bayesian Neural Network (BNN) object detector providing reliable un-certainty estimates is adapted to infer the informativeness of the unlabeled data. Furthermore, to cope with misalignments of the label distribution in uncertainty-based sampling, we develop an effective randomized sampling strategy that performs favorably compared to other complex alternatives. In our experiments on object classification and detection, we show benefits of our approach and provide evidence that labeling efforts can be reduced significantly. Finally, we demonstrate the practical effectiveness of this idea in a grasping task on an assistive robot.

OriginalspracheEnglisch
TitelIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten10820-10827
Seitenumfang8
ISBN (elektronisch)9781665479271
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Dauer: 23 Okt. 202227 Okt. 2022

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
Band2022-October
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Land/GebietJapan
OrtKyoto
Zeitraum23/10/2227/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Bayesian Active Learning for Sim-to-Real Robotic Perception“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren