Bavaria Buildings - A Novel Dataset for Building Footprint Extraction, Instance Segmentation, and Data Quality Estimation

Martin Werner, Hao Li, Johann Maximilian Zollner, Balthasar Teuscher, Fabian Deuser

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Bavaria Buildings is a large, analysis-ready dataset providing openly available co-registered 40cm aerial imagery of Upper Bavaria paired with building footprint information. The Bavaria Buildings dataset (BBD) contains 18205 orthophotos of 2500 × 2500 pixels, where each pixel covers 40cm × 40cm in space (Digitales Orthophoto 40cm - DOP40). The dataset has been pre-processed and co-registered and also provides a set of 5.5 million image tiles of 250 × 250 pixels ready for deep learning and image analysis tasks. For each image tile, we provide two segmentation masks; one based on the official building footprints (Hausumringe) data as published by the Free State of Bavaria and one based on a historic OpenStreetMap (OSM) extract dating to 2021. The dataset is ready for essential analysis tasks, such as detection, segmentation, instance extraction, footprint geometry extraction, multimodal localization, and multimodal data quality assessment of buildings in Bavaria. We plan to update the dataset with each major re-publication of the upstream data sources to foster change detection research in the future. The BBD is available at https://doi.org/10.14459/2023mp1709451.

OriginalspracheEnglisch
Titel31st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2023
Redakteure/-innenMaria Luisa Damiani, Matthias Renz, Ahmed Eldawy, Peer Kroger, Mario A. Nascimento
Herausgeber (Verlag)Association for Computing Machinery
ISBN (elektronisch)9798400701689
DOIs
PublikationsstatusVeröffentlicht - 13 Nov. 2023
Veranstaltung31st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2023 - Hamburg, Deutschland
Dauer: 13 Nov. 202316 Nov. 2023

Publikationsreihe

NameGIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems

Konferenz

Konferenz31st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2023
Land/GebietDeutschland
OrtHamburg
Zeitraum13/11/2316/11/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Bavaria Buildings - A Novel Dataset for Building Footprint Extraction, Instance Segmentation, and Data Quality Estimation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren