Batched large-scale bayesian optimization in high-dimensional spaces

Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka

Publikation: KonferenzbeitragPapierBegutachtung

120 Zitate (Scopus)

Abstract

Bayesian optimization (BO) has become an effective approach for black-box function optimization problems when function evaluations are expensive and the optimum can be achieved within a relatively small number of queries. However, many cases, such as the ones with high-dimensional inputs, may require a much larger number of observations for optimization. Despite an abundance of observations thanks to parallel experiments, current BO techniques have been limited to merely a few thousand observations. In this paper, we propose ensemble Bayesian optimization (EBO) to address three current challenges in BO simultaneously: (1) large-scale observations; (2) high dimensional input spaces; and (3) selections of batch queries that balance quality and diversity. The key idea of EBO is to operate on an ensemble of additive Gaussian process models, each of which possesses a randomized strategy to divide and conquer. We show unprecedented, previously impossible results of scaling up BO to tens of thousands of observations within minutes of computation.

OriginalspracheEnglisch
Seiten745-754
Seitenumfang10
PublikationsstatusVeröffentlicht - 2018
Extern publiziertJa
Veranstaltung21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018 - Playa Blanca, Lanzarote, Canary Islands, Spanien
Dauer: 9 Apr. 201811 Apr. 2018

Konferenz

Konferenz21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018
Land/GebietSpanien
OrtPlaya Blanca, Lanzarote, Canary Islands
Zeitraum9/04/1811/04/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Batched large-scale bayesian optimization in high-dimensional spaces“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren