Balanced graph partitioning

Konstantin Andreev, Harald Räcke

Publikation: KonferenzbeitragPapierBegutachtung

162 Zitate (Scopus)

Abstract

In this paper we consider the problem of (k, ν)-balanced graph partitioning - dividing the vertices of a graph into k almost equal size components (each of size less than ν · n/k) so that the capacity of edges between different components is minimized. This problem is a natural generalization of several other problems such as minimum bisection, which is the (2, 1)-balanced partitioning problem. We present a bicriteria polynomial time approximation algorithm with an O(log2 n)-approximation for any constant ν > 1. For ν = 1 we show that no polytime approximation algorithm can guarantee a finite approximation ratio unless P = NP. Previous work has only considered the (k, ν)-balanced partitioning problem for ν ≥ 2.

OriginalspracheEnglisch
Seiten120-124
Seitenumfang5
DOIs
PublikationsstatusVeröffentlicht - 2004
Extern publiziertJa
VeranstaltungSPAA 2004 - Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures - Barcelona, Spanien
Dauer: 27 Juni 200430 Juni 2004

Konferenz

KonferenzSPAA 2004 - Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures
Land/GebietSpanien
OrtBarcelona
Zeitraum27/06/0430/06/04

Fingerprint

Untersuchen Sie die Forschungsthemen von „Balanced graph partitioning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren