Background segmentation with feedback: The pixel-based adaptive segmenter

Martin Hofmann, Philipp Tiefenbacher, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

565 Zitate (Scopus)

Abstract

In this paper we present a novel method for foreground segmentation. Our proposed approach follows a non-parametric background modeling paradigm, thus the background is modeled by a history of recently observed pixel values. The foreground decision depends on a decision threshold. The background update is based on a learning parameter. We extend both of these parameters to dynamic per-pixel state variables and introduce dynamic controllers for each of them. Furthermore, both controllers are steered by an estimate of the background dynamics. In our experiments, the proposed Pixel-Based Adaptive Segmenter (PBAS) outperforms most state-of-the-art methods.

OriginalspracheEnglisch
Titel2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2012
Seiten38-43
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2012
Veranstaltung2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2012 - Providence, RI, USA/Vereinigte Staaten
Dauer: 16 Juni 201221 Juni 2012

Publikationsreihe

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (elektronisch)2160-7516

Konferenz

Konferenz2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2012
Land/GebietUSA/Vereinigte Staaten
OrtProvidence, RI
Zeitraum16/06/1221/06/12

Fingerprint

Untersuchen Sie die Forschungsthemen von „Background segmentation with feedback: The pixel-based adaptive segmenter“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren