Autonomous racing: A comparison of SLAM algorithms for large scale outdoor environments

Felix Nobis, Johannes Betz, Leonhard Hermansdorfer, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

The task of simultaneous localization and mapping (SLAM) is a widely studied field in robotics research in the last decades. The goal of SLAM is to create an accurate map of the environment considering uncertainties in the pose as well as the environmental perception of the robot. Historically SLAM algorithms are applied in the field of indoor robotics. Recent developments in the area of autonomous driving surge a focus for SLAM applications in large scale outdoor environments. Two notable open source SLAM software packages are Gmapping and Google Cartographer. This paper focuses on a qualitative comparison of the aforementioned algorithms for such a scenario. We discuss the underlying algorithmic differences of the two packages. This serves as the foundation to present the SLAM results for different parameter configurations. We evaluate the accuracy of the resulting maps and the respective computational limitations. The maps are further evaluated against manually measured ground truth track boundaries. We show that the existing approaches can be adapted to large-scale outdoor environments.

OriginalspracheEnglisch
TitelProceedings of the 2019 3rd International Conference on Virtual and Augmented Reality Simulations, ICVARS 2019
Herausgeber (Verlag)Association for Computing Machinery
Seiten82-89
Seitenumfang8
ISBN (elektronisch)9781450365925
DOIs
PublikationsstatusVeröffentlicht - 23 Feb. 2019
Veranstaltung3rd International Conference on Virtual and Augmented Reality Simulations, ICVARS 2019 - Perth, Australien
Dauer: 23 Feb. 201925 Feb. 2019

Publikationsreihe

NameACM International Conference Proceeding Series

Konferenz

Konferenz3rd International Conference on Virtual and Augmented Reality Simulations, ICVARS 2019
Land/GebietAustralien
OrtPerth
Zeitraum23/02/1925/02/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Autonomous racing: A comparison of SLAM algorithms for large scale outdoor environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren