TY - GEN
T1 - Autonomous manipulation of deformable objects based on teleoperated demonstrations
AU - Rambow, Matthias
AU - Schauss, Thomas
AU - Buss, Martin
AU - Hirche, Sandra
PY - 2012
Y1 - 2012
N2 - While humans can manipulate deformable objects smoothly and naturally, this is still a challenge for autonomous robots due to the complex object dynamics. The presence of rigid environment constraints and altering contact phases between the deformable object, the manipulator, and the environment makes this problem even more challenging. This paper presents a framework for deformable object manipulation that makes use of a single human demonstration of the task. The recorded trajectories are automatically segmented into a sequence of haptic control primitives involving contact with the rigid environment and vision-guided grasp primitives. The recorded motion/force trajectories serve as reference for a compliant control scheme in contact situations. In order to cope with positioning uncertainties a variable admittance control is proposed. The proposed approach is validated in an experimental mounting task for a deformable linear object with multiple re-grasping. The task is demonstrated with a multimodal teleoperation system and transfered to a robotic platform with a pair of seven degrees of freedom manipulators.
AB - While humans can manipulate deformable objects smoothly and naturally, this is still a challenge for autonomous robots due to the complex object dynamics. The presence of rigid environment constraints and altering contact phases between the deformable object, the manipulator, and the environment makes this problem even more challenging. This paper presents a framework for deformable object manipulation that makes use of a single human demonstration of the task. The recorded trajectories are automatically segmented into a sequence of haptic control primitives involving contact with the rigid environment and vision-guided grasp primitives. The recorded motion/force trajectories serve as reference for a compliant control scheme in contact situations. In order to cope with positioning uncertainties a variable admittance control is proposed. The proposed approach is validated in an experimental mounting task for a deformable linear object with multiple re-grasping. The task is demonstrated with a multimodal teleoperation system and transfered to a robotic platform with a pair of seven degrees of freedom manipulators.
UR - http://www.scopus.com/inward/record.url?scp=84872324178&partnerID=8YFLogxK
U2 - 10.1109/IROS.2012.6386002
DO - 10.1109/IROS.2012.6386002
M3 - Conference contribution
AN - SCOPUS:84872324178
SN - 9781467317375
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 2809
EP - 2814
BT - 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012
T2 - 25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
Y2 - 7 October 2012 through 12 October 2012
ER -