Automotive damper defect detection using novelty detection methods

Thomas Zehelein, Sebastian Schuck, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

With autonomous driving, the driver’s perceptual ability for irregularities in the chassis system will be decreased. Therefore, monitoring the chassis system for possible defects will be necessary. This paper analyzes the suitability of the four unsupervised learning algorithms for novelty detection Local Outlier Factor, Angle-based Outlier Detection, k-nearest neighbors and One-Class Support Vector Machine. The investigation is conducted using actual driving data with damper defects emulated using semi-active dampers. Aside from using manually generated features or using FFT datapoints as features, two automatically generated feature datasets using Autoencoder and Sparse Filter are investigated. Furthermore, the influence of different scaling methods and algorithm specific parameters is analyzed. Results show that a precision of up to 80 % is possible.

OriginalspracheEnglisch
TitelAdvanced Driver Assistance and Autonomous Technologies; Advances in Control Design Methods; Advances in Robotics; Automotive Systems; Design, Modeling, Analysis, and Control of Assistive and Rehabilitation Devices; Diagnostics and Detection; Dynamics and Control of Human-Robot Systems; Energy Optimization for Intelligent Vehicle Systems; Estimation and Identification; Manufacturing
Herausgeber (Verlag)American Society of Mechanical Engineers (ASME)
ISBN (elektronisch)9780791859148
DOIs
PublikationsstatusVeröffentlicht - 2019
VeranstaltungASME 2019 Dynamic Systems and Control Conference, DSCC 2019 - Park City, USA/Vereinigte Staaten
Dauer: 8 Okt. 201911 Okt. 2019

Publikationsreihe

NameASME 2019 Dynamic Systems and Control Conference, DSCC 2019
Band1

Konferenz

KonferenzASME 2019 Dynamic Systems and Control Conference, DSCC 2019
Land/GebietUSA/Vereinigte Staaten
OrtPark City
Zeitraum8/10/1911/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automotive damper defect detection using novelty detection methods“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren