Automatic quality control of cardiac MRI segmentation in large-scale population imaging

Robert Robinson, Vanya V. Valindria, Wenjia Bai, Hideaki Suzuki, Paul M. Matthews, Chris Page, Daniel Rueckert, Ben Glocker

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

23 Zitate (Scopus)

Abstract

The trend towards large-scale studies including population imaging poses new challenges in terms of quality control (QC). This is a particular issue when automatic processing tools such as image segmentation methods are employed to derive quantitative measures or biomarkers for further analyses. Manual inspection and visual QC of each segmentation result is not feasible at large scale. However, it is important to be able to detect when an automatic method fails to avoid inclusion of wrong measurements into subsequent analyses which could otherwise lead to incorrect conclusions. To overcome this challenge, we explore an approach for predicting segmentation quality based on reverse classification accuracy, which enables us to discriminate between successful and failed cases. We validate this approach on a large cohort of cardiac MRI for which manual QC scores were available. Our results on 7,425 cases demonstrate the potential for fully automatic QC in the context of large-scale population imaging such as the UK Biobank Imaging Study.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
Redakteure/-innenMaxime Descoteaux, Simon Duchesne, Alfred Franz, Pierre Jannin, D. Louis Collins, Lena Maier-Hein
Herausgeber (Verlag)Springer Verlag
Seiten720-727
Seitenumfang8
ISBN (Print)9783319661810
DOIs
PublikationsstatusVeröffentlicht - 2017
Extern publiziertJa
Veranstaltung20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Kanada
Dauer: 11 Sept. 201713 Sept. 2017

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band10433 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Land/GebietKanada
OrtQuebec City
Zeitraum11/09/1713/09/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automatic quality control of cardiac MRI segmentation in large-scale population imaging“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren