TY - JOUR
T1 - Automatic opportunistic osteoporosis screening in routine CT
T2 - improved prediction of patients with prevalent vertebral fractures compared to DXA
AU - Löffler, Maximilian T.
AU - Jacob, Alina
AU - Scharr, Andreas
AU - Sollmann, Nico
AU - Burian, Egon
AU - El Husseini, Malek
AU - Sekuboyina, Anjany
AU - Tetteh, Giles
AU - Zimmer, Claus
AU - Gempt, Jens
AU - Baum, Thomas
AU - Kirschke, Jan S.
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2021/8
Y1 - 2021/8
N2 - Objectives: To compare spinal bone measures derived from automatic and manual assessment in routine CT with dual energy X-ray absorptiometry (DXA) in their association with prevalent osteoporotic vertebral fractures using our fully automated framework (https://anduin.bonescreen.de) to assess various bone measures in clinical CT. Methods: We included 192 patients (141 women, 51 men; age 70.2 ± 9.7 years) who had lumbar DXA and CT available (within 1 year). Automatic assessment of spinal bone measures in CT included segmentation of vertebrae using a convolutional neural network (CNN), reduction to the vertebral body, and extraction of bone mineral content (BMC), trabecular and integral volumetric bone mineral density (vBMD), and CT-based areal BMD (aBMD) using asynchronous calibration. Moreover, trabecular bone was manually sampled (manual vBMD). Results: A total of 148 patients (77%) had vertebral fractures and significantly lower values in all bone measures compared to patients without fractures (p ≤ 0.001). Except for BMC, all CT-based measures performed significantly better as predictors for vertebral fractures compared to DXA (e.g., AUC = 0.885 for trabecular vBMD and AUC = 0.86 for integral vBMD vs. AUC = 0.668 for DXA aBMD, respectively; both p < 0.001). Age- and sex-adjusted associations with fracture status were strongest for manual vBMD (OR = 7.3, [95%] CI 3.8–14.3) followed by automatically assessed trabecular vBMD (OR = 6.9, CI 3.5–13.4) and integral vBMD (OR = 4.3, CI 2.5–7.6). Diagnostic cutoffs of integral vBMD for osteoporosis (< 160 mg/cm3) or low bone mass (160 ≤ BMD < 190 mg/cm3) had sensitivity (84%/41%) and specificity (78%/95%) similar to trabecular vBMD. Conclusions: Fully automatic osteoporosis screening in routine CT of the spine is feasible. CT-based measures can better identify individuals with reduced bone mass who suffered from vertebral fractures than DXA. Key Points: • Opportunistic osteoporosis screening of spinal bone measures derived from clinical routine CT is feasible in a fully automatic fashion using a deep learning-driven framework (https://anduin.bonescreen.de). • Manually sampled volumetric BMD (vBMD) and automatically assessed trabecular and integral vBMD were the best predictors for prevalent vertebral fractures. • Except for bone mineral content, all CT-based bone measures performed significantly better than DXA-based measures. • We introduce diagnostic thresholds of integral vBMD for osteoporosis (< 160 mg/cm3) and low bone mass (160 ≤ BMD < 190 mg/cm3) with almost equal sensitivity and specificity compared to conventional thresholds of quantitative CT as proposed by the American College of Radiology (osteoporosis < 80 mg/cm3).
AB - Objectives: To compare spinal bone measures derived from automatic and manual assessment in routine CT with dual energy X-ray absorptiometry (DXA) in their association with prevalent osteoporotic vertebral fractures using our fully automated framework (https://anduin.bonescreen.de) to assess various bone measures in clinical CT. Methods: We included 192 patients (141 women, 51 men; age 70.2 ± 9.7 years) who had lumbar DXA and CT available (within 1 year). Automatic assessment of spinal bone measures in CT included segmentation of vertebrae using a convolutional neural network (CNN), reduction to the vertebral body, and extraction of bone mineral content (BMC), trabecular and integral volumetric bone mineral density (vBMD), and CT-based areal BMD (aBMD) using asynchronous calibration. Moreover, trabecular bone was manually sampled (manual vBMD). Results: A total of 148 patients (77%) had vertebral fractures and significantly lower values in all bone measures compared to patients without fractures (p ≤ 0.001). Except for BMC, all CT-based measures performed significantly better as predictors for vertebral fractures compared to DXA (e.g., AUC = 0.885 for trabecular vBMD and AUC = 0.86 for integral vBMD vs. AUC = 0.668 for DXA aBMD, respectively; both p < 0.001). Age- and sex-adjusted associations with fracture status were strongest for manual vBMD (OR = 7.3, [95%] CI 3.8–14.3) followed by automatically assessed trabecular vBMD (OR = 6.9, CI 3.5–13.4) and integral vBMD (OR = 4.3, CI 2.5–7.6). Diagnostic cutoffs of integral vBMD for osteoporosis (< 160 mg/cm3) or low bone mass (160 ≤ BMD < 190 mg/cm3) had sensitivity (84%/41%) and specificity (78%/95%) similar to trabecular vBMD. Conclusions: Fully automatic osteoporosis screening in routine CT of the spine is feasible. CT-based measures can better identify individuals with reduced bone mass who suffered from vertebral fractures than DXA. Key Points: • Opportunistic osteoporosis screening of spinal bone measures derived from clinical routine CT is feasible in a fully automatic fashion using a deep learning-driven framework (https://anduin.bonescreen.de). • Manually sampled volumetric BMD (vBMD) and automatically assessed trabecular and integral vBMD were the best predictors for prevalent vertebral fractures. • Except for bone mineral content, all CT-based bone measures performed significantly better than DXA-based measures. • We introduce diagnostic thresholds of integral vBMD for osteoporosis (< 160 mg/cm3) and low bone mass (160 ≤ BMD < 190 mg/cm3) with almost equal sensitivity and specificity compared to conventional thresholds of quantitative CT as proposed by the American College of Radiology (osteoporosis < 80 mg/cm3).
KW - Bone mineral density
KW - Multidetector computed tomography
KW - Neural networks
KW - Osteoporosis
KW - Spine
UR - http://www.scopus.com/inward/record.url?scp=85099958874&partnerID=8YFLogxK
U2 - 10.1007/s00330-020-07655-2
DO - 10.1007/s00330-020-07655-2
M3 - Article
C2 - 33507353
AN - SCOPUS:85099958874
SN - 0938-7994
VL - 31
SP - 6069
EP - 6077
JO - European Radiology
JF - European Radiology
IS - 8
ER -