Automatic detection of the nasal cavities and paranasal sinuses using deep neural networks

Cristina Oyarzun Laura, Patrick Hofmann, Klaus Drechsler, Stefan Wesarg

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

14 Zitate (Scopus)

Abstract

The nasal cavity and paranasal sinuses present large interpa-tient variabilities. Additional circumstances like for example, concha bullosa or nasal septum deviations complicate their segmentation. As in other areas of the body a previous multi-structure detection could facilitate the segmentation task. In this paper an approach is proposed to individually detect all sinuses and the nasal cavity. For a better delimitation of their borders the use of an irregular polyhedron is proposed. For an accurate prediction the Darknet-19 deep neural network is used which combined with the You Only Look Once method has shown very promising results in other fields of computer vision. 57 CT scans were available of which 85% were used for training and the remaining 15% for validation.

OriginalspracheEnglisch
TitelISBI 2019 - 2019 IEEE International Symposium on Biomedical Imaging
Herausgeber (Verlag)IEEE Computer Society
Seiten1154-1157
Seitenumfang4
ISBN (elektronisch)9781538636411
DOIs
PublikationsstatusVeröffentlicht - Apr. 2019
Extern publiziertJa
Veranstaltung16th IEEE International Symposium on Biomedical Imaging, ISBI 2019 - Venice, Italien
Dauer: 8 Apr. 201911 Apr. 2019

Publikationsreihe

NameProceedings - International Symposium on Biomedical Imaging
Band2019-April
ISSN (Print)1945-7928
ISSN (elektronisch)1945-8452

Konferenz

Konferenz16th IEEE International Symposium on Biomedical Imaging, ISBI 2019
Land/GebietItalien
OrtVenice
Zeitraum8/04/1911/04/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automatic detection of the nasal cavities and paranasal sinuses using deep neural networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren