Automatic algorithm transformation for efficient multisnapshot analytics on temporal graphs

Manuel Then, Timo Kersten, Stephan Günnemann, Alfons Kemper, Thomas Neumann

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

23 Zitate (Scopus)

Abstract

Analytical graph algorithms commonly compute metrics for a graph at one point in time. In practice it is often also of interest how metrics change over time, e.g., to find trends. For this purpose, algorithms must be executed for multiple graph snapshots. We present Single Algorithm Multiple Snapshots (SAMS), a novel approach to execute algorithms concurrently for multiple graph snapshots. SAMS automatically transforms graph algorithms to leverage similarities between the analyzed graph snapshots. The automatic transformation interleaves algorithm executions on multiple snapshots, synergistically shares their graph accesses and traversals, and optimizes the algorithm's data layout. Thus, SAMS can amortize the cost of random data accesses and improve memory bandwidth utilization-two main cost factors in graph analytics. We extensively evaluate SAMS using six well-known algorithms and multiple synthetic as well as real-world graph datasets. Our measurements show that in multi-snapshot analyses, SAMS offers runtime improvements of up to two orders of magnitude over traditional snapshot-at-a-time execution.

OriginalspracheEnglisch
Seiten (von - bis)877-888
Seitenumfang12
FachzeitschriftProceedings of the VLDB Endowment
Jahrgang10
Ausgabenummer8
DOIs
PublikationsstatusVeröffentlicht - 2017
Veranstaltung43rd International Conference on Very Large Data Bases, VLDB 2017 - Munich, Deutschland
Dauer: 28 Aug. 20171 Sept. 2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automatic algorithm transformation for efficient multisnapshot analytics on temporal graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren