Automated stock picking using random forests

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

We derive a stock ranking by applying a technical features-based random forest model on an international dataset of liquid stocks. Rather than predicted return, our ranking is based on outperformance probability. By applying a decile split, we find that long–short portfolios achieve Sharpe ratios of up to 1.95 and a highly significant yearly six-factor alpha of up to 21.79%. Moreover, we show that outperformance probabilities serve as a superior measure of future returns in the context of portfolio optimization. Mean–variance portfolios using this measure are less volatile and more profitable than equally- or value-weighted portfolios. Our findings are robust to firm size, regional restrictions, and non-crisis periods and cannot be explained by limits to arbitrage.

OriginalspracheEnglisch
Seiten (von - bis)532-556
Seitenumfang25
FachzeitschriftJournal of Empirical Finance
Jahrgang72
DOIs
PublikationsstatusVeröffentlicht - Juni 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automated stock picking using random forests“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren