Automated Process Synthesis Using Reinforcement Learning

Quirin Göttl, Dominik Grimm, Jakob Burger

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

1 Zitat (Scopus)

Abstract

A novel method for automated flowsheet synthesis based on reinforcement learning (RL) is presented. Using the interaction with a process simulator as the learning environment, an agent is trained to solve the task of synthesizing process flowsheets without any heuristics or prior knowledge. The developed RL method models the task as a competitive two-player game that the agent plays against itself during training. The concept is proven to work along an example with a quaternary mixture that is processed using a reactor or distillation units.

OriginalspracheEnglisch
TitelComputer Aided Chemical Engineering
Herausgeber (Verlag)Elsevier B.V.
Seiten209-214
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - Jan. 2021

Publikationsreihe

NameComputer Aided Chemical Engineering
Band50
ISSN (Print)1570-7946

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automated Process Synthesis Using Reinforcement Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren