Automated Flowsheet Synthesis Using Hierarchical Reinforcement Learning: Proof of Concept

Quirin Göttl, Yannic Tönges, Dominik G. Grimm, Jakob Burger

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

14 Zitate (Scopus)

Abstract

Recently we showed that reinforcement learning can be used to automatically generate process flowsheets without heuristics or prior knowledge. For this purpose, SynGameZero, a novel two-player game has been developed. In this work we extend SynGameZero by structuring the agent's actions in several hierarchy levels, which improves the approach in terms of scalability and allows the consideration of more sophisticated flowsheet problems. We successfully demonstrate the usability of our novel framework for the fully automated synthesis of an ethyl tert-butyl ether process.

OriginalspracheEnglisch
Seiten (von - bis)2010-2018
Seitenumfang9
FachzeitschriftChemie-Ingenieur-Technik
Jahrgang93
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 1 Dez. 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automated Flowsheet Synthesis Using Hierarchical Reinforcement Learning: Proof of Concept“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren