Autocompletion of Design Data in Semantic Building Models using Link Prediction and Graph Neural Networks

Viktor Eisenstadt, Jessica Bielski, Christoph Langenhan, Klaus-Dieter Althoff, Christoph Langenhan, Andreas Dengel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This paper presents an approach for AI-based autocompletion of graph-based spatial configurations using deep learning in the form of link prediction through graph neural networks. The main goal of the research presented is to estimate the probability of connections between the rooms of the spatial configuration graph at hand using the available semantic information. In the context of early design stages, deep learning-based prediction of spatial connections helps to make the design process more efficient and sustainable using the past experiences collected in a training dataset. Using the techniques of transfer learning, we adapted methods available in the modern graph-based deep learning frameworks in order to apply them for our autocompletion purposes to suggest possible further design steps. The results of training, testing, and evaluation showed very good results and justified application of these methods.
OriginalspracheEnglisch
TitelEducation and research in Computer Aided Architectural Design in Europe Conference
Redakteure/-innenB Pak, G Wurzer, R Stouffs
Herausgeber (Verlag)KU Leuven Technology Campus, Ghent/Belgium
Band1
PublikationsstatusVeröffentlicht - 2022

Publikationsreihe

NameeCAADe
Herausgeber (Verlag)KU Leuven Technology Campus, Ghent/Belgium

Fingerprint

Untersuchen Sie die Forschungsthemen von „Autocompletion of Design Data in Semantic Building Models using Link Prediction and Graph Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren