Auto-Regressive RF Synchronization Using Deep-Learning

Michael Petry, Benjamin Parlier, Andreas Koch, Martin Werner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This work presents a novel pilot-less Deep-Learning-based synchronization mechanism that seamlessly integrates within state-of-the-art auto-encoder-based end-to-end communication systems. By re-using the idea of Radio Transformer Networks, an auto-regressive strategy is designed that learns to estimate and mitigate synchronization-related perturbations for arbitrarily modulated continuous communication, i.e., sample time offset (STO) and carrier frequency offset (CFO). A performance gain of 0.6 dB in the high-SNR regime compared to classic synchronization techniques is demonstrated. The strength of this approach is a shift from sample-by-sample to batch-wise processing according to the ML paradigm, which enables efficient and fast computation required for practical deployment scenarios using hardware-accelerated ML inference engines.

OriginalspracheEnglisch
Titel2024 IEEE International Conference on Machine Learning for Communication and Networking, ICMLCN 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten145-150
Seitenumfang6
ISBN (elektronisch)9798350343199
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung1st IEEE International Conference on Machine Learning for Communication and Networking, ICMLCN 2024 - Stockholm, Schweden
Dauer: 5 Mai 20248 Mai 2024

Publikationsreihe

Name2024 IEEE International Conference on Machine Learning for Communication and Networking, ICMLCN 2024

Konferenz

Konferenz1st IEEE International Conference on Machine Learning for Communication and Networking, ICMLCN 2024
Land/GebietSchweden
OrtStockholm
Zeitraum5/05/248/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Auto-Regressive RF Synchronization Using Deep-Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren