Augmenting generative adversarial networks for speech emotion recognition

Siddique Latif, Muhammad Asim, Rajib Rana, Sara Khalifa, Raja Jurdak, Björn W. Schuller

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

30 Zitate (Scopus)

Abstract

Generative adversarial networks (GANs) have shown potential in learning emotional attributes and generating new data samples. However, their performance is usually hindered by the unavailability of larger speech emotion recognition (SER) data. In this work, we propose a framework that utilises the mixup data augmentation scheme to augment the GAN in feature learning and generation. To show the effectiveness of the proposed framework, we present results for SER on (i) synthetic feature vectors, (ii) augmentation of the training data with synthetic features, (iii) encoded features in compressed representation. Our results show that the proposed framework can effectively learn compressed emotional representations as well as it can generate synthetic samples that help improve performance in within-corpus and cross-corpus evaluation.

OriginalspracheEnglisch
TitelInterspeech 2020
Herausgeber (Verlag)International Speech Communication Association
Seiten521-525
Seitenumfang5
ISBN (Print)9781713820697
DOIs
PublikationsstatusVeröffentlicht - 2020
Extern publiziertJa
Veranstaltung21st Annual Conference of the International Speech Communication Association, INTERSPEECH 2020 - Shanghai, China
Dauer: 25 Okt. 202029 Okt. 2020

Publikationsreihe

NameProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
Band2020-October
ISSN (Print)2308-457X
ISSN (elektronisch)1990-9772

Konferenz

Konferenz21st Annual Conference of the International Speech Communication Association, INTERSPEECH 2020
Land/GebietChina
OrtShanghai
Zeitraum25/10/2029/10/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Augmenting generative adversarial networks for speech emotion recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren