Audio-Visual Person-of-Interest DeepFake Detection

Davide Cozzolino, Alessandro Pianese, Matthias Nießner, Luisa Verdoliva

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

38 Zitate (Scopus)

Abstract

Face manipulation technology is advancing very rapidly, and new methods are being proposed day by day. The aim of this work is to propose a deepfake detector that can cope with the wide variety of manipulation methods and scenarios encountered in the real world. Our key insight is that each person has specific characteristics that a synthetic generator likely cannot reproduce. Accordingly, we extract audio-visual features which characterize the identity of a person, and use them to create a person-of-interest (POI) deepfake detector. We leverage a contrastive learning paradigm to learn the moving-face and audio segment embeddings that are most discriminative for each identity. As a result, when the video and/or audio of a person is manipulated, its representation in the embedding space becomes inconsistent with the real identity, allowing reliable detection. Training is carried out exclusively on real talking-face video; thus, the detector does not depend on any specific manipulation method and yields the highest generalization ability. In addition, our method can detect both single-modality (audio-only, video-only) and multimodality (audio-video) attacks, and is robust to low-quality or corrupted videos. Experiments on a wide variety of datasets confirm that our method ensures a SOTA performance, especially on low quality videos. Code is publicly available on-line at https://github.com/grip-unina/poi-forensics.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Herausgeber (Verlag)IEEE Computer Society
Seiten943-952
Seitenumfang10
ISBN (elektronisch)9798350302493
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 - Vancouver, Kanada
Dauer: 18 Juni 202322 Juni 2023

Publikationsreihe

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Band2023-June
ISSN (Print)2160-7508
ISSN (elektronisch)2160-7516

Konferenz

Konferenz2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Land/GebietKanada
OrtVancouver
Zeitraum18/06/2322/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Audio-Visual Person-of-Interest DeepFake Detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren