ATTENTION-BASED PARTIAL FACE RECOGNITION

Stefan Hörmann, Zeyuan Zhang, Martin Knoche, Torben Teepe, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Photos of faces captured in unconstrained environments, such as large crowds, still constitute challenges for current face recognition approaches as often faces are occluded by objects or people in the foreground. However, few studies have addressed the task of recognizing partial faces. In this paper, we propose a novel approach to partial face recognition capable of recognizing faces with different occluded areas. We achieve this by combining attentional pooling of a ResNet’s intermediate feature maps with a separate aggregation module. We further adapt common losses to partial faces in order to ensure that the attention maps are diverse and handle occluded parts. Our thorough analysis demonstrates that we outperform all baselines under multiple benchmark protocols, including naturally and synthetically occluded partial faces. This suggests that our method successfully focuses on the relevant parts of the occluded face.

OriginalspracheEnglisch
Titel2021 IEEE International Conference on Image Processing, ICIP 2021 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten2978-2982
Seitenumfang5
ISBN (elektronisch)9781665441155
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung2021 IEEE International Conference on Image Processing, ICIP 2021 - Anchorage, USA/Vereinigte Staaten
Dauer: 19 Sept. 202122 Sept. 2021

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
Band2021-September
ISSN (Print)1522-4880

Konferenz

Konferenz2021 IEEE International Conference on Image Processing, ICIP 2021
Land/GebietUSA/Vereinigte Staaten
OrtAnchorage
Zeitraum19/09/2122/09/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „ATTENTION-BASED PARTIAL FACE RECOGNITION“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren