Atlas selection strategy for automatic segmentation of pediatric brain MRIs into 83 ROIs

Ioannis S. Gousias, Alexander Hammers, Rolf A. Heckemann, Serena J. Counsell, Leigh E. Dyet, James P. Boardman, A. David Edwards, Daniel Rueckert

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

14 Zitate (Scopus)

Abstract

Registration algorithms can facilitate the automatic anatomical segmentation of pediatric brain MR data sets when segmentation priors (atlases) are in hand. Automatic segmentation can be achieved through label propagation and label fusion in target space. We investigated the performance of different age cohorts used as prior atlases for the segmentation of 13 MRIs of 1-year-olds. Thirty adults and 33 2-year-olds (including the 13 1-year olds, scanned a year later) served as priors for label propagation and fusion. In addition, we tested the accuracy of a single propagation step of the atlas of the same subject scanned at 2 years of age. Pediatric priors performed better than adult priors on visual inspection as well as manual validation of the caudate nucleus (Dice index=0.89±0.02 vs. 0.86±0.03). Corresponding single atlases at the age of 2 performed better than the fusion of 30 adult priors (83 ROIs / average Dice=0.87±0.05 vs. 0.84±0.07).

OriginalspracheEnglisch
Titel2010 IEEE International Conference on Imaging Systems and Techniques, IST 2010 - Proceedings
Seiten290-293
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 2010
Extern publiziertJa
Veranstaltung2010 IEEE International Conference on Imaging Systems and Techniques, IST 2010 - Thessaloniki, Griechenland
Dauer: 1 Juli 20102 Juli 2010

Publikationsreihe

Name2010 IEEE International Conference on Imaging Systems and Techniques, IST 2010 - Proceedings

Konferenz

Konferenz2010 IEEE International Conference on Imaging Systems and Techniques, IST 2010
Land/GebietGriechenland
OrtThessaloniki
Zeitraum1/07/102/07/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Atlas selection strategy for automatic segmentation of pediatric brain MRIs into 83 ROIs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren