Assessment of dimensionality reduction based on communication channel model; Application to immersive information visualization

Mohammadreza Babaee, Mihai Datcu, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

We are dealing with large-scale high-dimensional image data sets requiring new approaches for data mining where visualization plays the main role. Dimension reduction (DR) techniques are widely used to visualize high-dimensional data. However, the information loss due to reducing the number of dimensions is the drawback of DRs. In this paper, we introduce a novel metric to assess the quality of DRs in terms of preserving the structure of data. We model the dimensionality reduction process as a communication channel model transferring data points from a high-dimensional space (input) to a lower one (output). In this model, a co-ranking matrix measures the degree of similarity between the input and the output. Mutual information (MI) and entropy defined over the co-ranking matrix measure the quality of the applied DR technique. We validate our method by reducing the dimension of SIFT and Weber descriptors extracted from Earth Observation (EO) optical images. In our experiments, Laplacian Eigenmaps (LE) and Stochastic Neighbor Embedding (SNE) act as DR techniques. The experimental results demonstrate that the DR technique with the largest MI and entropy preserves the structure of data better than the others.

OriginalspracheEnglisch
TitelProceedings - 2013 IEEE International Conference on Big Data, Big Data 2013
Herausgeber (Verlag)IEEE Computer Society
Seiten1-6
Seitenumfang6
ISBN (Print)9781479912926
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung2013 IEEE International Conference on Big Data, Big Data 2013 - Santa Clara, CA, USA/Vereinigte Staaten
Dauer: 6 Okt. 20139 Okt. 2013

Publikationsreihe

NameProceedings - 2013 IEEE International Conference on Big Data, Big Data 2013

Konferenz

Konferenz2013 IEEE International Conference on Big Data, Big Data 2013
Land/GebietUSA/Vereinigte Staaten
OrtSanta Clara, CA
Zeitraum6/10/139/10/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Assessment of dimensionality reduction based on communication channel model; Application to immersive information visualization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren