ASSESSING IFC CLASSES WITH MEANS OF GEOMETRIC DEEP LEARNING ON DIFFERENT GRAPH ENCODINGS

Fiona C. Collins, Alexander Braun, Martin Ringsquandl, Daniel M. Hall, André Borrmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

18 Zitate (Scopus)

Abstract

Machine-readable Building Information Models (BIM) are of great benefit for the building operation phase. Losses through data exchange or issues in software interoperability can significantly impede their availability. Incorrect and imprecise semantics in the exchange format IFC are frequent and complicate knowledge extraction. To support an automated IFC object correction, we use a Geometric Deep Learning (GDL) approach to perform classification based solely on the 3D shape. A Graph Convolutional Network (GCN) uses the native triangle-mesh and automatically creates meaningful local features for subsequent classification. The method reaches an accuracy of up to 85% on our self-assembled, partially industry dataset.

OriginalspracheEnglisch
TitelProceedings of the 2021 European Conference on Computing in Construction
Redakteure/-innenDaniel M. Hall, Athanasios Chassiakos, James O'Donnell, Dragana Nikolic, Yiannis Xenides
Herausgeber (Verlag)European Council on Computing in Construction (EC3)
Seiten332-341
Seitenumfang10
ISBN (Print)9783907234549
DOIs
PublikationsstatusVeröffentlicht - 2021
VeranstaltungEuropean Conference on Computing in Construction, EC3 2021 - Virtual, Online
Dauer: 26 Juli 202128 Juli 2021

Publikationsreihe

NameProceedings of the European Conference on Computing in Construction
ISSN (elektronisch)2684-1150

Konferenz

KonferenzEuropean Conference on Computing in Construction, EC3 2021
OrtVirtual, Online
Zeitraum26/07/2128/07/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „ASSESSING IFC CLASSES WITH MEANS OF GEOMETRIC DEEP LEARNING ON DIFFERENT GRAPH ENCODINGS“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren