Are Your Friends Also Haters? Identification of Hater Networks on Social Media: Data Paper

Maximilian Wich, Melissa Breitinger, Wienke Strathern, Marlena Naimarevic, Georg Groh, Jürgen Pfeffer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Hate speech on social media platforms has become a severe issue in recent years. To cope with it, researchers have developed machine learning-based classification models. Due to the complexity of the problem, the models are far from perfect. A promising approach to improve them is to integrate social network data as additional features in the classification. Unfortunately, there is a lack of datasets containing text and social network data to investigate this phenomenon. Therefore, we develop an approach to identify and collect hater networks on Twitter that uses a pre-Trained classification model to focus on hateful content. The contributions of this article are (1) an approach to identify hater networks and (2) an anonymized German offensive language dataset that comprises social network data. The dataset consists of 4,647,200 labeled tweets and a social graph with 49,353 users and 122,053 edges.

OriginalspracheEnglisch
TitelThe Web Conference 2021 - Companion of the World Wide Web Conference, WWW 2021
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten481-485
Seitenumfang5
ISBN (elektronisch)9781450383134
DOIs
PublikationsstatusVeröffentlicht - 19 Apr. 2021
Veranstaltung30th World Wide Web Conference, WWW 2021 - Ljubljana, Slowenien
Dauer: 19 Apr. 202123 Apr. 2021

Publikationsreihe

NameThe Web Conference 2021 - Companion of the World Wide Web Conference, WWW 2021

Konferenz

Konferenz30th World Wide Web Conference, WWW 2021
Land/GebietSlowenien
OrtLjubljana
Zeitraum19/04/2123/04/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Are Your Friends Also Haters? Identification of Hater Networks on Social Media: Data Paper“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren