TY - JOUR
T1 - Arabidopsis MCTP family member QUIRKY regulates the formation of the STRUBBELIG receptor kinase complex
AU - Chen, Xia
AU - Leśniewska, Barbara
AU - Boikine, Rodion
AU - Yun, Nicole
AU - Mody, Tejasvinee Atul
AU - Vaddepalli, Prasad
AU - Schneitz, Kay
N1 - Publisher Copyright:
© American Society of Plant Biologists 2023. All rights reserved.
PY - 2023/12
Y1 - 2023/12
N2 - Intercellular communication plays a central role in organogenesis. Tissue morphogenesis in Arabidopsis (Arabidopsis thaliana) requires signaling mediated by a cell surface complex containing the atypical receptor kinase STRUBBELIG (SUB) and the multiple C2 domains and transmembrane region protein QUIRKY (QKY). QKY is required to stabilize SUB at the plasma membrane. However, it is unclear what the in vivo architecture of the QKY/SUB signaling complex is, how it is controlled, and how it relates to the maintenance of SUB at the cell surface. We addressed these questions using a combination of genetics, yeast 2-hybrid assays, and Förster resonance energy transfer (FRET)/fluorescence lifetime imaging microscopy (FLIM) in epidermal cells of seedling roots. We found that QKY promotes the formation of SUB homooligomers in vivo. Homooligomerization of SUB appeared to involve its extracellular domain. We also showed that QKY and SUB physically interact and form a complex at the cell surface in vivo. In addition, the data showed that the N-terminal C2A-B region of QKY interacts with the intracellular domain of SUB. They further revealed that this interaction is essential to maintain SUB levels at the cell surface. Finally, we provided evidence that QKY forms homomultimers in vivo in a SUB-independent manner. We suggest a model in which the physical interaction of QKY with SUB mediates the oligomerization of SUB and attenuates its internalization, thereby maintaining sufficiently high levels of SUB at the cell surface required for the control of tissue morphogenesis.
AB - Intercellular communication plays a central role in organogenesis. Tissue morphogenesis in Arabidopsis (Arabidopsis thaliana) requires signaling mediated by a cell surface complex containing the atypical receptor kinase STRUBBELIG (SUB) and the multiple C2 domains and transmembrane region protein QUIRKY (QKY). QKY is required to stabilize SUB at the plasma membrane. However, it is unclear what the in vivo architecture of the QKY/SUB signaling complex is, how it is controlled, and how it relates to the maintenance of SUB at the cell surface. We addressed these questions using a combination of genetics, yeast 2-hybrid assays, and Förster resonance energy transfer (FRET)/fluorescence lifetime imaging microscopy (FLIM) in epidermal cells of seedling roots. We found that QKY promotes the formation of SUB homooligomers in vivo. Homooligomerization of SUB appeared to involve its extracellular domain. We also showed that QKY and SUB physically interact and form a complex at the cell surface in vivo. In addition, the data showed that the N-terminal C2A-B region of QKY interacts with the intracellular domain of SUB. They further revealed that this interaction is essential to maintain SUB levels at the cell surface. Finally, we provided evidence that QKY forms homomultimers in vivo in a SUB-independent manner. We suggest a model in which the physical interaction of QKY with SUB mediates the oligomerization of SUB and attenuates its internalization, thereby maintaining sufficiently high levels of SUB at the cell surface required for the control of tissue morphogenesis.
UR - http://www.scopus.com/inward/record.url?scp=85178540411&partnerID=8YFLogxK
U2 - 10.1093/plphys/kiad489
DO - 10.1093/plphys/kiad489
M3 - Article
C2 - 37668394
AN - SCOPUS:85178540411
SN - 0032-0889
VL - 193
SP - 2538
EP - 2554
JO - Plant Physiology
JF - Plant Physiology
IS - 4
ER -