TY - JOUR
T1 - Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity
AU - Stanislas, Thomas
AU - Hüser, Anke
AU - Barbosa, Inês C.R.
AU - Kiefer, Christian S.
AU - Brackmann, Klaus
AU - Pietra, Stefano
AU - Gustavsson, Anna
AU - Zourelidou, Melina
AU - Schwechheimer, Claus
AU - Grebe, Markus
N1 - Publisher Copyright:
© 2015 Macmillan Publishers Limited. All rights reserved.
PY - 2015/11/2
Y1 - 2015/11/2
N2 - Development of diverse multicellular organisms relies on coordination of single-cell polarities within the plane of the tissue layer (planar polarity). Cell polarity often involves plasma membrane heterogeneity generated by accumulation of specific lipids and proteins into membrane subdomains. Coordinated hair positioning along Arabidopsis root epidermal cells provides a planar polarity model in plants, but knowledge about the functions of proteo-lipid domains in planar polarity signalling remains limited. Here we show that Rho-of-plant (ROP) 2 and 6, phosphatidylinositol-4-phosphate 5-kinase 3 (PIP5K3), DYNAMIN-RELATED PROTEIN (DRP) 1A and DRP2B accumulate in a sterol-enriched, polar membrane domain during root hair initiation. DRP1A, DRP2B, PIP5K3 and sterols are required for planar polarity and the AGCVIII kinase D6 PROTEIN KINASE (D6PK) is a modulator of this process. D6PK undergoes phosphatidylinositol-4,5-bisphosphate- and sterol-dependent basal-To-planar polarity switching into the polar, lipid-enriched domain just before hair formation, unravelling lipid-dependent D6PK localization during late planar polarity signalling.
AB - Development of diverse multicellular organisms relies on coordination of single-cell polarities within the plane of the tissue layer (planar polarity). Cell polarity often involves plasma membrane heterogeneity generated by accumulation of specific lipids and proteins into membrane subdomains. Coordinated hair positioning along Arabidopsis root epidermal cells provides a planar polarity model in plants, but knowledge about the functions of proteo-lipid domains in planar polarity signalling remains limited. Here we show that Rho-of-plant (ROP) 2 and 6, phosphatidylinositol-4-phosphate 5-kinase 3 (PIP5K3), DYNAMIN-RELATED PROTEIN (DRP) 1A and DRP2B accumulate in a sterol-enriched, polar membrane domain during root hair initiation. DRP1A, DRP2B, PIP5K3 and sterols are required for planar polarity and the AGCVIII kinase D6 PROTEIN KINASE (D6PK) is a modulator of this process. D6PK undergoes phosphatidylinositol-4,5-bisphosphate- and sterol-dependent basal-To-planar polarity switching into the polar, lipid-enriched domain just before hair formation, unravelling lipid-dependent D6PK localization during late planar polarity signalling.
UR - http://www.scopus.com/inward/record.url?scp=84946234290&partnerID=8YFLogxK
U2 - 10.1038/nplants.2015.162
DO - 10.1038/nplants.2015.162
M3 - Article
AN - SCOPUS:84946234290
SN - 2055-0278
VL - 1
JO - Nature Plants
JF - Nature Plants
M1 - 15162
ER -