Approximative methods for monotone systems of min-max-polynomial equations

Javier Esparza, Thomas Gawlitza, Stefan Kiefer, Helmut Seidl

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

13 Zitate (Scopus)

Abstract

A monotone system of min-max-polynomial equations (min-max-MSPE) over the variables X1,...,Xn has for every i exactly one equation of the form Xi = fi (X1,...,Xn) where each fi (X1,...,Xn ) is an expression built up from polynomials with non-negative coefficients, minimum- and maximum-operators. The question of computing least solutions of min-max-MSPEs arises naturally in the analysis of recursive stochastic games [5,6,14]. Min-max-MSPEs generalize MSPEs for which convergence speed results of Newton's method are established in [11,3]. We present the first methods for approximatively computing least solutions of min-max-MSPEs which converge at least linearly. Whereas the first one converges faster, a single step of the second method is cheaper. Furthermore, we compute ε-optimal positional strategies for the player who wants to maximize the outcome in a recursive stochastic game.

OriginalspracheEnglisch
TitelAutomata, Languages and Programming - 35th International Colloquium, ICALP 2008, Proceedings
Seiten698-710
Seitenumfang13
AuflagePART 1
DOIs
PublikationsstatusVeröffentlicht - 2008
Veranstaltung35th International Colloquium on Automata, Languages and Programming, ICALP 2008 - Reykjavik, Island
Dauer: 7 Juli 200811 Juli 2008

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 1
Band5125 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz35th International Colloquium on Automata, Languages and Programming, ICALP 2008
Land/GebietIsland
OrtReykjavik
Zeitraum7/07/0811/07/08

Fingerprint

Untersuchen Sie die Forschungsthemen von „Approximative methods for monotone systems of min-max-polynomial equations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren