Approximation of diameters: Randomization doesn't help

Andreas Brieden, Ravi Kannan, Laszlo Lovasz, Peter Gritzmann, Victor Klee, Miklos Simonovits

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

20 Zitate (Scopus)

Abstract

We describe a deterministic polynomial-time algorithm which, for a convex body K in Euclidean n-space, finds upper and lower bounds on K's diameter which differ by a factor of O(√n/log n). We show that this is, within a constant factor, the best approximation to the diameter that a polynomial-time algorithm can produce even if randomization is allowed. We also show that the above results hold for other quantities similar to the diameter - namely, inradius, circumradius, width, and maximization of the norm over K. In addition to these results for Euclidean spaces, we give tight results for the error of deterministic polynomial-time approximations of radii and norm-maxima for convex bodies in finite-dimensional lp spaces.

OriginalspracheEnglisch
Seiten (von - bis)244-251
Seitenumfang8
FachzeitschriftAnnual Symposium on Foundations of Computer Science - Proceedings
PublikationsstatusVeröffentlicht - 1998
VeranstaltungProceedings of the 1998 39th Annual Symposium on Foundations of Computer Science - Palo Alto, CA, USA
Dauer: 8 Nov. 199811 Nov. 1998

Fingerprint

Untersuchen Sie die Forschungsthemen von „Approximation of diameters: Randomization doesn't help“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren