Approximating the traveling tournament problem with maximum tour length 2

Clemens Thielen, Stephan Westphal

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

We consider the traveling tournament problem, which is a well-known benchmark problem in tournament timetabling. The most important variant of the problem imposes restrictions on the number of consecutive home games or away games a team may have. We consider the case where at most two consecutive home games or away games are allowed. We show that the well-known independent lower bound for this case cannot be reached and present an approximation algorithm that has an approximation ratio of 3/2 + 6/n-4, where n is the number of teams in the tournament. In the case that n is divisible by 4, this approximation ratio improves to 3/2 + 5/n-1.

OriginalspracheEnglisch
TitelAlgorithms and Computation - 21st International Symposium, ISAAC 2010, Proceedings
Seiten303-314
Seitenumfang12
AuflagePART 2
DOIs
PublikationsstatusVeröffentlicht - 2010
Extern publiziertJa
Veranstaltung21st Annual International Symposium on Algorithms and Computations, ISAAC 2010 - Jeju Island, Südkorea
Dauer: 15 Dez. 201017 Dez. 2010

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 2
Band6507 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz21st Annual International Symposium on Algorithms and Computations, ISAAC 2010
Land/GebietSüdkorea
OrtJeju Island
Zeitraum15/12/1017/12/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Approximating the traveling tournament problem with maximum tour length 2“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren