Approximating binary images from discrete X-rays

Peter Gritzmann, Sven De Vries, Markus Wiegelmann

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

41 Zitate (Scopus)

Abstract

We study the problem of approximating binary images that are accessible only through few evaluations of their discrete X-ray transform, i.e., through their projections counted with multiplicity along some lines. This inverse discrete problem belongs to a class of generalized set partitioning problems and allows natural packing and covering relaxations. For these (double-struck N sign double-struck P sign-hard) optimization problems we present various approximation algorithms and provide estimates for their worst-case performance. Further, we report on computational results for various variants of these algorithms. In particular, the corresponding integer programs are solved with only small absolute error for instances up to 250,000 binary variables.

OriginalspracheEnglisch
Seiten (von - bis)522-546
Seitenumfang25
FachzeitschriftSIAM Journal on Optimization
Jahrgang11
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 2000

Fingerprint

Untersuchen Sie die Forschungsthemen von „Approximating binary images from discrete X-rays“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren