Approximate Computing for ML: State-of-the-art, Challenges and Visions

Georgios Zervakis, Hassaan Saadat, Hussam Mrouch, Andreas Gerstlauer, Sri Parameswaran, Jorg Henkel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

39 Zitate (Scopus)

Abstract

In this paper, we present our state-of-the-art approximate techniques that cover the main pillars of approximate computing research. Our analysis considers both static and reconfigurable approximation techniques as well as operation-specific approximate components (e.g., multipliers) and generalized approximate highlevel synthesis approaches. As our application target, we discuss the improvements that such techniques bring on machine learning and neural networks. In addition to the conventionally analyzed performance and energy gains, we also evaluate the improvements that approximate computing brings in the operating temperature.

OriginalspracheEnglisch
TitelProceedings of the 26th Asia and South Pacific Design Automation Conference, ASP-DAC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten189-196
Seitenumfang8
ISBN (elektronisch)9781450379991
DOIs
PublikationsstatusVeröffentlicht - 18 Jan. 2021
Extern publiziertJa
Veranstaltung26th Asia and South Pacific Design Automation Conference, ASP-DAC 2021 - Virtual, Online, Japan
Dauer: 18 Jan. 202121 Jan. 2021

Publikationsreihe

NameProceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC

Konferenz

Konferenz26th Asia and South Pacific Design Automation Conference, ASP-DAC 2021
Land/GebietJapan
OrtVirtual, Online
Zeitraum18/01/2121/01/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Approximate Computing for ML: State-of-the-art, Challenges and Visions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren