Applying random forests to the problem of dense non-rigid shape correspondence

Matthias Vestner, Emanuele Rodolà, Thomas Windheuser, Samuel Rota Bulò, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

Abstract

We introduce a novel dense shape matching method for deformable, three-dimensional shapes. Differently from most existing techniques, our approach is general in that it allows the shapes to undergo deformations that are far from being isometric. We do this in a supervised learning framework which makes use of training data as represented by a small set of example shapes. From this set, we learn an implicit representation of a shape descriptor capturing the variability of the deformations in the given class. The learning paradigm we choose for this task is a random forest classifier. With the additional help of a spatial regularizer, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping a low computational cost.

OriginalspracheEnglisch
TitelVisualization in Medicine and Life Sciences III - Towards Making an Impact
Redakteure/-innenLars Linsen, Hans-Christian Hege, Bernd Hamann
Herausgeber (Verlag)Springer Heidelberg
Seiten231-248
Seitenumfang18
ISBN (Print)9783319245218
DOIs
PublikationsstatusVeröffentlicht - 2016

Publikationsreihe

NameMathematics and Visualization
ISSN (Print)1612-3786
ISSN (elektronisch)2197-666X

Fingerprint

Untersuchen Sie die Forschungsthemen von „Applying random forests to the problem of dense non-rigid shape correspondence“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren