TY - GEN
T1 - Applying GNNs to timing estimation at RTL
AU - Lopera, Daniela Sánchez
AU - Ecker, Wolfgang
N1 - Publisher Copyright:
© 2022 Copyright held by the owner/author(s).
PY - 2022/10/30
Y1 - 2022/10/30
N2 - In the Electronic Design Automation (EDA) flow, signoff checks, such as timing analysis, are performed only after physical synthesis. Encountered timing violations cause re-iterations of the design flow. Hence, timing estimations at initial design stages, such as Register Transfer Level (RTL), would increase the quality of the results and lower the flow iterations. Machine learning has been used to estimate the timing behavior of chip components. However, existing solutions map EDA objects to Euclidean data without considering that EDA objects are represented naturally as graphs. Recent advances in Graph Neural Networks (GNNs) motivate the mapping from EDA objects to graphs for design metric prediction tasks at different stages. This paper maps RTL designs to directed, featured graphs with multidimensional node and edge features. These are the input to GNNs for estimating component delays and slews. An in-house hardware generation framework and open-source EDA tools for ASIC synthesis are employed for collecting training data. Experiments over unseen circuits show that GNN-based models are promising for timing estimation, even when the features come from early RTL implementations. Based on estimated delays, critical areas of the design can be detected, and proper RTL micro-architectures can be chosen without running long design iterations.
AB - In the Electronic Design Automation (EDA) flow, signoff checks, such as timing analysis, are performed only after physical synthesis. Encountered timing violations cause re-iterations of the design flow. Hence, timing estimations at initial design stages, such as Register Transfer Level (RTL), would increase the quality of the results and lower the flow iterations. Machine learning has been used to estimate the timing behavior of chip components. However, existing solutions map EDA objects to Euclidean data without considering that EDA objects are represented naturally as graphs. Recent advances in Graph Neural Networks (GNNs) motivate the mapping from EDA objects to graphs for design metric prediction tasks at different stages. This paper maps RTL designs to directed, featured graphs with multidimensional node and edge features. These are the input to GNNs for estimating component delays and slews. An in-house hardware generation framework and open-source EDA tools for ASIC synthesis are employed for collecting training data. Experiments over unseen circuits show that GNN-based models are promising for timing estimation, even when the features come from early RTL implementations. Based on estimated delays, critical areas of the design can be detected, and proper RTL micro-architectures can be chosen without running long design iterations.
KW - Delay
KW - Electronic Design Automation
KW - Graph Neural Networks
KW - Register Transfer Level
KW - Slew
KW - Timing Analysis
UR - http://www.scopus.com/inward/record.url?scp=85145654057&partnerID=8YFLogxK
U2 - 10.1145/3508352.3561095
DO - 10.1145/3508352.3561095
M3 - Conference contribution
AN - SCOPUS:85145654057
T3 - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
BT - Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 41st IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2022
Y2 - 30 October 2022 through 4 November 2022
ER -