Application of unsupervised clustering methods to medical imaging

A. Meyer-Baese, F. J. Theis, P. Gruber, A. Wismueller, H. Ritter

Publikation: KonferenzbeitragPapierBegutachtung

3 Zitate (Scopus)

Abstract

Unsupervised clustering techniques represent a powerful technique for self-organized segmentation of biomedical image time-series data describing groups of pixels exhibiting similar properties of local signal dynamics. The theoretical background is presented in the beginning, followed by several medical applications demonstrating the flexibility and conceptual power of these techniques. These applications range from functional MRI data analysis to dynamic contrast-enhanced perfusion MRI and breast MRI. The present paper gives a review of potential applications of unsupervised clustering techniques in the important and current field of functional and dynamic MRI.

OriginalspracheEnglisch
Seiten621-628
Seitenumfang8
PublikationsstatusVeröffentlicht - 2005
Extern publiziertJa
Veranstaltung5th Workshop on Self-Organizing Maps, WSOM 2005 - Paris, Frankreich
Dauer: 5 Sept. 20058 Sept. 2005

Konferenz

Konferenz5th Workshop on Self-Organizing Maps, WSOM 2005
Land/GebietFrankreich
OrtParis
Zeitraum5/09/058/09/05

Fingerprint

Untersuchen Sie die Forschungsthemen von „Application of unsupervised clustering methods to medical imaging“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren