TY - GEN
T1 - Anticipating the long-term effect of online learning in control
AU - Capone, Alexandre
AU - Hirche, Sandra
N1 - Publisher Copyright:
© 2020 AACC.
PY - 2020/7
Y1 - 2020/7
N2 - Control schemes that learn using measurement data collected online are increasingly promising for the control of complex and uncertain systems. However, in most approaches of this kind, learning is viewed as a side effect that passively improves control performance, e.g., by updating a model of the system dynamics. Determining how improvements in control performance due to learning can be actively exploited in the control synthesis is still an open research question. In this paper, we present AntLer, a design algorithm for learning-based control laws that anticipates learning, i.e., that takes the impact of future learning in uncertain dynamic settings explicitly into account. AntLer expresses system uncertainty using a non-parametric probabilistic model. Given a cost function that measures control performance, AntLer chooses the control parameters such that the expected cost of the closed-loop system is minimized approximately. We show that AntLer approximates an optimal solution arbitrarily accurately with probability one. Furthermore, we apply AntLer to a nonlinear system, which yields better results compared to the case where learning is not anticipated.
AB - Control schemes that learn using measurement data collected online are increasingly promising for the control of complex and uncertain systems. However, in most approaches of this kind, learning is viewed as a side effect that passively improves control performance, e.g., by updating a model of the system dynamics. Determining how improvements in control performance due to learning can be actively exploited in the control synthesis is still an open research question. In this paper, we present AntLer, a design algorithm for learning-based control laws that anticipates learning, i.e., that takes the impact of future learning in uncertain dynamic settings explicitly into account. AntLer expresses system uncertainty using a non-parametric probabilistic model. Given a cost function that measures control performance, AntLer chooses the control parameters such that the expected cost of the closed-loop system is minimized approximately. We show that AntLer approximates an optimal solution arbitrarily accurately with probability one. Furthermore, we apply AntLer to a nonlinear system, which yields better results compared to the case where learning is not anticipated.
UR - http://www.scopus.com/inward/record.url?scp=85089601787&partnerID=8YFLogxK
U2 - 10.23919/ACC45564.2020.9147920
DO - 10.23919/ACC45564.2020.9147920
M3 - Conference contribution
AN - SCOPUS:85089601787
T3 - Proceedings of the American Control Conference
SP - 3865
EP - 3872
BT - 2020 American Control Conference, ACC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 American Control Conference, ACC 2020
Y2 - 1 July 2020 through 3 July 2020
ER -