Anomaly Detection from Time Series Under Uncertainty

Paul Wiessner, Grigor Bezirganyan, Sana Sellami, Richard Chbeir, Hans Joachim Bungartz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Anomalies in data can cause potential issues in downstream tasks, making their detection critical. Data collection processes for continuous data are often defective and imprecise. For example, sensors are resource-constrained devices, raising questions about their reliability. This imprecision in measurements can be characterized as noise. In machine learning, noise is referred to as data (aleatoric) uncertainty. Additionally, the model itself introduces a second layer of uncertainty, known as model (epistemic) uncertainty. In this paper, we propose an LSTM Autoencoder that quantifies both data and model uncertainty, enabling a deeper understanding of noise recognition. Our experimental results across different real-world datasets show that consideration of uncertainty effectively increases the robustness to noise and point outliers, making predictions more reliable for longer periodic sequential data.

OriginalspracheEnglisch
TitelBig Data Analytics and Knowledge Discovery - 26th International Conference, DaWaK 2024, Proceedings
Redakteure/-innenRobert Wrembel, Silvia Chiusano, Gabriele Kotsis, Ismail Khalil, A Min Tjoa
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten231-238
Seitenumfang8
ISBN (Print)9783031683220
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung26th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2024 - Naples, Italien
Dauer: 26 Aug. 202428 Aug. 2024

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14912 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz26th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2024
Land/GebietItalien
OrtNaples
Zeitraum26/08/2428/08/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Anomaly Detection from Time Series Under Uncertainty“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren