TY - JOUR
T1 - ANGUSTIFOLIA is a central component of tissue morphogenesis mediated by the atypical receptor-like kinase STRUBBELIG.
AU - Bai, Yang
AU - Vaddepalli, Prasad
AU - Fulton, Lynette
AU - Bhasin, Hemal
AU - Hülskamp, Martin
AU - Schneitz, Kay
N1 - Funding Information:
AN in the control of microtubule organization [21]. The new slm phenotypes of an mutants reported in this study indicate that AN is involved in a SUB dependent signal transduction cascade. This function is separate from the first two functional aspects derived from leaf shape and trichome phenotypes, as sub mutants do not share these phenotypic aspects [2]. Such a broad spectrum of functions is compatible with the proposed biochemical functions of the AN protein. The AN gene encodes a protein with homology to CtBP/BARS [21,22]. CtBPs (C-terminal Binding Protein) were initially discovered as proteins binding to the C-terminal domain of adenovirus EA-1 [23]. CtBPs have been described as co-repressors for many transcriptional repressors carrying a PxDLS or RRT protein motif [24,25]. A possible function of AN as a corepressor is the finding that micro-array experiments revealed many genes that are transcriptionally regulated by AN [2,22]. CtBP/BARS were independently identified as Brefeldin A ADP ribosylated substrates (BARS) [17]. A possible Golgi-related function is supported by the finding that CtBP can induce constriction in Golgi tubules [26] and membrane fission [27]. In support of such a function AN was reported to act outside the nucleus [28].
PY - 2013
Y1 - 2013
N2 - During plant tissue morphogenesis cells have to coordinate their behavior to allow the generation of the size, shape and cellular patterns that distinguish an organ. Despite impressive progress the underlying signaling pathways remain largely unexplored. In Arabidopsis thaliana, the atypical leucine-rich repeat receptor-like kinase STRUBBELIG (SUB) is involved in signal transduction in several developmental processes including the formation of carpels, petals, ovules and root hair patterning. The three STRUBBELIG-LIKE MUTANT (SLM) genes DETORQUEO (DOQ), QUIRKY (QKY) and ZERZAUST (ZET) are considered central elements of SUB-mediated signal transduction pathways as corresponding mutants share most phenotypic aspects with sub mutants. Here we show that DOQ corresponds to the previously identified ANGUSTIFOLIA gene. The genetic analysis revealed that the doq-1 mutant exhibits all additional mutant phenotypes and conversely that other an alleles show the slm phenotypes. We further provide evidence that SUB and AN physically interact and that AN is not required for subcellular localization of SUB. Our data suggest that AN is involved in SUB signal transduction pathways. In addition, they reveal previously unreported functions of AN in several biological processes, such as ovule development, cell morphogenesis in floral meristems, and root hair patterning. Finally, SUB and AN may directly interact at the plasma membrane to mediate SUB-dependent signaling.
AB - During plant tissue morphogenesis cells have to coordinate their behavior to allow the generation of the size, shape and cellular patterns that distinguish an organ. Despite impressive progress the underlying signaling pathways remain largely unexplored. In Arabidopsis thaliana, the atypical leucine-rich repeat receptor-like kinase STRUBBELIG (SUB) is involved in signal transduction in several developmental processes including the formation of carpels, petals, ovules and root hair patterning. The three STRUBBELIG-LIKE MUTANT (SLM) genes DETORQUEO (DOQ), QUIRKY (QKY) and ZERZAUST (ZET) are considered central elements of SUB-mediated signal transduction pathways as corresponding mutants share most phenotypic aspects with sub mutants. Here we show that DOQ corresponds to the previously identified ANGUSTIFOLIA gene. The genetic analysis revealed that the doq-1 mutant exhibits all additional mutant phenotypes and conversely that other an alleles show the slm phenotypes. We further provide evidence that SUB and AN physically interact and that AN is not required for subcellular localization of SUB. Our data suggest that AN is involved in SUB signal transduction pathways. In addition, they reveal previously unreported functions of AN in several biological processes, such as ovule development, cell morphogenesis in floral meristems, and root hair patterning. Finally, SUB and AN may directly interact at the plasma membrane to mediate SUB-dependent signaling.
UR - http://www.scopus.com/inward/record.url?scp=84873028621&partnerID=8YFLogxK
U2 - 10.1186/1471-2229-13-16
DO - 10.1186/1471-2229-13-16
M3 - Article
C2 - 23368817
AN - SCOPUS:84873028621
VL - 13
SP - 16
JO - Unknown Journal
JF - Unknown Journal
ER -