Anatomic-landmark detection using graphical context modelling

Lichao Wang, Vasileios Belagiannis, Carsten Marr, Fabian Theis, Guang Zhong Yang, Nassir Navab

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Anatomical landmarks in images play an important role in medical practice. This paper presents a graphical model that fully automatically detects such landmarks. The model includes a unary potential using a random forest classifier based on local appearance and binary and ternary potentials encoding geometrical context among different landmarks. The weightings of different potentials are learned in a maximum likelihood manner. The final detection result is formulated as the maximum-a-posteriori estimation jointly over the whole set of landmarks in one image. For validation, the model is applied to detect right-ventricle insert points in cardiac MR images. The result shows that the context modelling is able to substantially improve the overall accuracy.

OriginalspracheEnglisch
Titel2015 IEEE 12th International Symposium on Biomedical Imaging, ISBI 2015
Herausgeber (Verlag)IEEE Computer Society
Seiten1304-1307
Seitenumfang4
ISBN (elektronisch)9781479923748
DOIs
PublikationsstatusVeröffentlicht - 21 Juli 2015
Veranstaltung12th IEEE International Symposium on Biomedical Imaging, ISBI 2015 - Brooklyn, USA/Vereinigte Staaten
Dauer: 16 Apr. 201519 Apr. 2015

Publikationsreihe

NameProceedings - International Symposium on Biomedical Imaging
Band2015-July
ISSN (Print)1945-7928
ISSN (elektronisch)1945-8452

Konferenz

Konferenz12th IEEE International Symposium on Biomedical Imaging, ISBI 2015
Land/GebietUSA/Vereinigte Staaten
OrtBrooklyn
Zeitraum16/04/1519/04/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „Anatomic-landmark detection using graphical context modelling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren