Analyzing the Power Market and Projecting the Future with High Energy and Carbon Prices: A Machine-Learning Approach

Shiva Madadkhani, Svetlana Ikonnikova

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

Abstract

Increasing shares of renewables in the energy matrix is linked to increased power price fluctuations, which, in turn, increases the financial risks for electricity market participants. In this context, understanding the key factors driving the power prices and thereby improving price forecasts is increasingly important. Here we analyze the main drivers of power prices with the help of machine learning. We show how the selection of the predictors set and length of historical data affect the forecast accuracy of the power prices. Using the developed model, we project how high energy and carbon prices may affect future electricity prices.

OriginalspracheEnglisch
FachzeitschriftEnergy Proceedings
Jahrgang25
DOIs
PublikationsstatusVeröffentlicht - 2022
VeranstaltungApplied Energy Symposium, MIT A+B 2022 - Cambridge, USA/Vereinigte Staaten
Dauer: 5 Juli 20228 Juli 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Analyzing the Power Market and Projecting the Future with High Energy and Carbon Prices: A Machine-Learning Approach“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren