TY - JOUR
T1 - Analysis of Arabidopsis glutathione-transferases in yeast
AU - Krajewski, Matthias P.
AU - Kanawati, Basem
AU - Fekete, Agnes
AU - Kowalski, Natalie
AU - Schmitt-Kopplin, Philippe
AU - Grill, Erwin
N1 - Funding Information:
We are grateful to Jana Wünschmann for her help and expertise in yeast genetics, and members of the Botany Department for useful suggestions. Thanks to Farhah Assaad for critically reviewing the manuscript. We thank the Deutsche Forschungsgemeinschaft , grant DFG EG938/4 for financial support. The provision of Arabidopsis GST cDNAs by ABRC stockcenter, Norwich, and RIKEN, Japan, is gratefully acknowledged.
PY - 2013
Y1 - 2013
N2 - The genome of Arabidopsis thaliana encodes 54 functional glutathione transferases (GSTs), classified in seven clades. Although plant GSTs have been implicated in the detoxification of xenobiotics, such as herbicides, extensive redundancy within this large gene family impedes a functional analysis in planta. In this study, a GST-deficient yeast strain was established as a system for analyzing plant GSTs that allows screening for GST substrates and identifying substrate preferences within the plant GST family. To this end, five yeast genes encoding GSTs and GST-related proteins were simultaneously disrupted. The resulting yeast quintuple mutant showed a strongly reduced conjugation of the GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl). Consistently, the quintuple mutant was hypersensitive to CDNB, and this phenotype was complemented by the inducible expression of Arabidopsis GSTs. The conjugating activity of the plant GSTs was assessed by in vitro enzymatic assays and via analysis of exposed yeast cells. The formation of glutathione adducts with dinitrobenzene was unequivocally verified by stable isotope labeling and subsequent accurate ultrahigh-resolution mass spectrometry (ICR-FTMS). Analysis of Arabidopsis GSTs encompassing six clades and 42 members demonstrated functional expression in yeast by using CDNB and NBD-Cl as model substrates. Subsequently, the established yeast system was explored for its potential to screen the Arabidopsis GST family for conjugation of the fungicide anilazine. Thirty Arabidopsis GSTs were identified that conferred increased levels of glutathionylated anilazine. Efficient anilazine conjugation was observed in the presence of the phi, tau, and theta clade GSTs including AtGSTF2, AtGSTF4, AtGSTF6, AtGSTF8, AtGSTF10, and AtGSTT2, none of which had previously been known to contribute to fungicide detoxification. ICR-FTMS analysis of yeast extracts allowed the simultaneous detection and semiquantification of anilazine conjugates as well as catabolites.
AB - The genome of Arabidopsis thaliana encodes 54 functional glutathione transferases (GSTs), classified in seven clades. Although plant GSTs have been implicated in the detoxification of xenobiotics, such as herbicides, extensive redundancy within this large gene family impedes a functional analysis in planta. In this study, a GST-deficient yeast strain was established as a system for analyzing plant GSTs that allows screening for GST substrates and identifying substrate preferences within the plant GST family. To this end, five yeast genes encoding GSTs and GST-related proteins were simultaneously disrupted. The resulting yeast quintuple mutant showed a strongly reduced conjugation of the GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl). Consistently, the quintuple mutant was hypersensitive to CDNB, and this phenotype was complemented by the inducible expression of Arabidopsis GSTs. The conjugating activity of the plant GSTs was assessed by in vitro enzymatic assays and via analysis of exposed yeast cells. The formation of glutathione adducts with dinitrobenzene was unequivocally verified by stable isotope labeling and subsequent accurate ultrahigh-resolution mass spectrometry (ICR-FTMS). Analysis of Arabidopsis GSTs encompassing six clades and 42 members demonstrated functional expression in yeast by using CDNB and NBD-Cl as model substrates. Subsequently, the established yeast system was explored for its potential to screen the Arabidopsis GST family for conjugation of the fungicide anilazine. Thirty Arabidopsis GSTs were identified that conferred increased levels of glutathionylated anilazine. Efficient anilazine conjugation was observed in the presence of the phi, tau, and theta clade GSTs including AtGSTF2, AtGSTF4, AtGSTF6, AtGSTF8, AtGSTF10, and AtGSTT2, none of which had previously been known to contribute to fungicide detoxification. ICR-FTMS analysis of yeast extracts allowed the simultaneous detection and semiquantification of anilazine conjugates as well as catabolites.
KW - Detoxification
KW - Fungicide
KW - ICR-FTMS
KW - Isotope labeling
KW - Xenobiotics
UR - http://www.scopus.com/inward/record.url?scp=84878954803&partnerID=8YFLogxK
U2 - 10.1016/j.phytochem.2012.04.016
DO - 10.1016/j.phytochem.2012.04.016
M3 - Article
C2 - 22633844
AN - SCOPUS:84878954803
SN - 0031-9422
VL - 91
SP - 198
EP - 207
JO - Phytochemistry
JF - Phytochemistry
ER -