Analysis of a bistable climate toy model with physics-based machine learning methods

Maximilian Gelbrecht, Valerio Lucarini, Niklas Boers, Jürgen Kurths

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

7 Zitate (Scopus)

Abstract

We propose a comprehensive framework able to address both the predictability of the first and of the second kind for high-dimensional chaotic models. For this purpose, we analyse the properties of a newly introduced multistable climate toy model constructed by coupling the Lorenz ’96 model with a zero-dimensional energy balance model. First, the attractors of the system are identified with Monte Carlo Basin Bifurcation Analysis. Additionally, we are able to detect the Melancholia state separating the two attractors. Then, Neural Ordinary Differential Equations are applied to predict the future state of the system in both of the identified attractors.

OriginalspracheEnglisch
Seiten (von - bis)3121-3131
Seitenumfang11
FachzeitschriftEuropean Physical Journal: Special Topics
Jahrgang230
Ausgabenummer14-15
DOIs
PublikationsstatusVeröffentlicht - Okt. 2021
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Analysis of a bistable climate toy model with physics-based machine learning methods“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren