An online incremental clustering framework for real-time stream analytics

Carlos Salort Sanchez, Radu Tudoran, Mohamad Al Hajj Hassan, Stefano Bortoli, Goetz Brasche, Jan Baumbach, Cristian Axenie

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

With the evolution of data acquisition methods, our ability to collect real time data has increased. This requires the development of real-time analytics, using the most recent data to generate valuable insights. One example is customer profiling, where we want to identify groups of similar clients who were active recently, and improve the quality of the suggestions. Traditional clustering algorithms perform well on finite datasets, but their execution is often not compatible with real-time requirements, especially for rapid changing trends. In this context, we propose a novel approach for the definition of incremental clustering algorithms to work within real-time constraints, in an online fashion, while preserving accuracy. We show the general applicability of the framework by employing this method to three different clustering algorithms. We compare the experimental results between traditional and online approaches evaluating accuracy and computational cost. The results show that algorithms executed in our framework are comparable to their offline implementation in terms of accuracy and with a high gain in execution time, up to three orders of magnitude on average.

OriginalspracheEnglisch
TitelProceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019
Redakteure/-innenM. Arif Wani, Taghi M. Khoshgoftaar, Dingding Wang, Huanjing Wang, Naeem Seliya
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1480-1485
Seitenumfang6
ISBN (elektronisch)9781728145495
DOIs
PublikationsstatusVeröffentlicht - Dez. 2019
Veranstaltung18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019 - Boca Raton, USA/Vereinigte Staaten
Dauer: 16 Dez. 201919 Dez. 2019

Publikationsreihe

NameProceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019

Konferenz

Konferenz18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019
Land/GebietUSA/Vereinigte Staaten
OrtBoca Raton
Zeitraum16/12/1919/12/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „An online incremental clustering framework for real-time stream analytics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren